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Chapter 1

Experiment generation

1.1 Introduction

A conjoint experiment is a statistical analysis technique designed to uncover the value people
assign to different aspects of a product. It is especially useful when you are in the process of
developing new products or services, and you are uncertain about which features matter most or
least to consumers. The insights gained from a conjoint experiment provide valuable guidance
during the creation of new products and services, ensuring they align with consumer preferences
and expectations.

The initial step of conducting your conjoint experiment is to break down your product or ser-
vice into distinctive features that may influence consumer preferences; these features are called
“attributes.” For each attribute, you then specify its respective variations, referred to as “levels.”
This is better explained with an example: Imagine we’re in the business of crafting sophisticated
men’s dress shoes, and we’re on a mission to create new styles that truly resonate with our cus-
tomers. To achieve this, we’re going to use a conjoint experiment to understand exactly what
features our customers are looking for in a shoe. From experience we think that a shoe can be
described by its style, material, color, and price. These will be our attributes. Based on what we
can create at our factory, we define the possible levels of each attribute as follows:

Style Material Color Price
Oxford Leather Black $160

Monk strap Faux leather Brown $170
Derby Canvas Chestnut $180

For our conjoint experiment we need to generate a set of alternatives from a set of Na attributes,
where the kth attribute has ℓk levels (a total of ∑

Na
k=1 ℓk = NL levels). Each alternative uses exactly

one level from each attribute, with these alternatives we construct choice sets and present each
choice set to respondents and ask them to choose their preferred alternative from each set.

1.2 Definitions

To make it simpler to define our methods we need some definitions [1]:

Stated choice experiment: this is a set of choice sets, each choice set consists of two or more
alternatives, each respondent is shown each choice set and chooses one of the alternatives. It is
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also called discrete choice experiment or stated preference experiment.

Choice set size: number of alternatives in a choice set.

Attributes and levels: alternatives are described by attributes, each with two or more levels. For
example, we could construct car alternatives with three attributes: brand, colour, and type. Brand
has levels Chevrolet and Toyota, colour has levels black and white, and type has levels sedan and
hatchback. Each alternative can have at most one level from each attribute. Each alternative must
have plausible levels which are varied over the range of relevance.

Attribute Brand Colour Type
Level 1 Chevrolet Black Sedan
Level 2 Toyota White Hatchback

Complete factorial design: is a design that has at least one of every possible level combination.
When all attributes have the same number of levels, then the design is said to be symmetric, and
asymmetric otherwise.

Main effect: individual effect of each attribute on the response.

Interaction effect: when the effect of one of the attributes on the response depends on the level
of other attribute.

Fractional factorial design: a design in which only a subset of the possible level combinations
appears.

Orthogonal main effects plan (OMEP): this is an Nc ×Na array, where elements in column
k can take as values any of the levels in attribute k, such that for any pair of columns k and q, the
number of times that the ordered pair (x,y) appears in the columns is equal to nxknyq/Nc where nxk
is the number of times level x appears in column k. For example the following array is an OMEP:

A D G
A E H
A F I
B D I
B E G
B F H
C D H
C E I
C F G

as for every pair of columns the possible pairwise combinations between the elements of those
columns appear an equal number of times. For example if we take columns 1 and 3, we see that
the pairs (A,G), (A,H), (A,I), (B,G), (B,H), (B,I), (C,G), (C,H), (C,I) all appear 3×3/9 = 1 time.
The main effects can be estimated from an OMEP. Similarly, a Near Orthogonal Main Effects Plan
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(NOMEP) is a fractional factorial design that is as close to orthogonal as possible.

Utility: “the net benefit derived from taking some action” [2]. In a choice experiment we as-
sume that the subjects assign a utility to each alternative in a choice set and then chooses the one
with the highest utility.

Part worth: is the “value” the subjects give to an attribute level. Hence, the “utility” of an
alternative is the sum of the part worths of the levels that make up the alternative.

Dominant alternative: an alternative that will be preferred by all respondents, for example a
car with the cheapest price and with the best features. It is best to avoid choice sets where one
option will be dominant to all respondents. It is also best to avoid choice sets where one option
will be dominated by the others.

We will use these terms throughout this document, as such it is important to understand them.
Now let’s look at desirable properties of choice designs:

1. A manageable number of choice sets

2. Equal replication of levels of each attribute across all the choice sets.

3. Levels within each attribute should appear an equal number of times, this is known as level
balance. For example if we have an attribute with 2 levels and one with 3 levels and we
have 6 alternatives, then each level in attribute one should appear 3 times, and each level in
attribute two should appear 2 times.

4. All combinations of levels of an attribute should appear equally often over all the choice
sets.

5. Avoidance of any predictable pattern in the choice sets.

6. It is also desirable to have as many combinations of levels of an attribute as possible appear-
ing in the choice experiment.

7. If possible, alternatives in a choice set should have nearly equal utilities. That is, we want to
avoid choice sets with dominant or dominated alternatives. For this we need some a priori
knowledge of respondent preferences.

1.3 Construction of alternatives

Ideally we want to construct OMEPs, but sometimes this is not possible. In order to construct
an OMEP we need the total number of alternatives, Nc, to be a common multiple of the number
of levels per attribute and of the number of level combinations per attribute combination. For
example, let’s say we have four attributes, the first one with 5 levels, the second and third attributes
with 3 levels, and the fourth attribute with 2. Thus, the attribute combinations have the following
number of level combinations:

1. Between Attribute 1 and Attribute 2 or 3: 15 level combinations.
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2. Between Attribute 1 and Attribute 4: 10 level combinations.

3. Between attributes 2, 3: 9 level combinations.

4. Between Attribute 4 and Attribute 2 or 3: 6 level combinations.

Hence, we need Nc to be a common multiple of [2,3,5,6,9,10,15] in order to construct an OMEP.
The least common multiplier for these is 90; for a respondent this could be too many alternatives
to handle. Hence, it would be better to construct a NOMEP with less alternatives. We want our
design to be level balanced, as such Nc should be a multiple of the number of levels. We could
choose Nc = 30, as 30 is a multiple of [2, 3, 5], and then we could construct 10 choice sets each
with 3 alternatives.

To construct the OMEPs or NOMEPs I will use the algorithm presented by Xu [3]. The author
defines the J2 optimality criterion, where a design is optimal under J2 if it minimizes J2. For a
Nc ×Na matrix XXX = [xi,k], where column k has ℓk levels, we let

δi, j(XXX) =
Na

∑
k=1

ωkδ (xi,k,x j,k) i, j = 1,2, . . . ,Nc (1.1)

where δ (xi,k,x j,k) = 1 if xi,k = x j,k, and 0 otherwise, and ωk > 0 is a weight assigned to column k.
If we set ωk = 1, then δi, j(XXX) counts the number of level coincidences between rows i and j. For
example, if we have the following matrix

X =

1 0 0 1
0 0 1 0
1 1 0 0


using ωk = 1, then δ between rows 1 and 3 is δ1,3(XXX) = 2, because for column 1 both elements
are 1, and for column 3 both elements are 0, thus we have two level coincidences. With this we
can define the optimality criterion

J2(XXX) =
Nc−1

∑
i=1

Nc

∑
j=i+1

[
δi, j(XXX)

]2
. (1.2)

For a Nc ×Na matrix XXX where the kth column has ℓk levels, the lower bound of J2(XXX) is [3]

J2(XXX)≥ L(Na) =
1
2

( Na

∑
k=1

Ncωk

ℓk

)2

+
Na

∑
k=1

(ℓk −1)
(

Ncωk

ℓk

)2

−Nc

(
Na

∑
k=1

ωk

)2
 (1.3)

and J2(XXX) = L(Na) if XXX is orthogonal (OMEP)[3]. An OMEP is J2 optimal for any choice of
weights, while the J2 optimality depends on the choice of the weights. If the weight of column k
is equal to the number of levels of column k, ωk = ℓk, which is referred as natural weights, and if
XXX is level balanced, then [3]

J2(XXX) = N2
c A2(XXX)+

Nc

2

NcNa(Na −1)+Na

Na

∑
k=1

ℓk −

(
Na

∑
k=1

ℓk

)2
 (1.4)
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where A2(XXX) is an optimality criterion introduced by Eccleston and Hedayat [4], where A2(XXX) = 0
if XXX is orthogonal, as such it is a good optimality criterion for NOMEPS. Thus, using natural
weights is a good choice to construct our designs.

If we have a matrix XXX and we want to add a column ccc with ℓk levels and weight ωk, then for
the resultant matrix XXX+

δi, j(XXX+) = δi, j(XXX)+δi, j(ccc) (1.5)

Now, if we switch two elements of column ccc that are different, ca ̸= cb, with each other, then
J2(X+X+X+) is changed by −2∆(a,b), where

∆(a,b) = ∑
1≤ j ̸=a,b≤Nc

[δ (XXX)a, j −δ (XXX)b, j][δ (ccc)a, j −δ (ccc)b, j]. (1.6)

and δi, j(ccc) is updated by switching {δa, j(ccc)↔ δb, j(ccc)} and {δ j,a(ccc)↔ δ j,b(ccc)} for all j ̸= a,b.

1.3.1 Example

Let’s do an example to show what we have defined so far. Let’s say we have 2 attributes each with
ℓk = 2 and ωk = 1. If we construct matrix XXX ,

XXX =


0 0
0 1
1 0
1 1


then we calculate δδδ (XXX) = [δ (XXX)i, j] following equation 1.1,

δδδ (XXX) =


2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 ,

and using equation 1.2,

J2(XXX) = 12 +12 +02 +02 +12 +12 = 4.

The lower bound L(2) with ℓk = 2, ωk = 1, and Nc = 4 is calculated following equation 1.3,

L(2) = 4

As J2(XXX) = L(2), XXX is an OMEP. If we want to add column ccc with ℓk = 2 and ωk = 1,

ccc =


0
0
1
1


we calculate δδδ (ccc)

δδδ (ccc) =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1
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following equation 1.5 we calculate δδδ (XXX+) for our augmented matrix

δδδ (XXX+) = δδδ (XXX)+δδδ (ccc) =


2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

+


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

=


3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3


and following equation 1.2

J2(XXX+) = 22 +12 +02 +02 +12 +22 = 10.

The lower bound L(3) is calculated following equation 1.3

L(3) = 6,

since J2(XXX+)> L(3), then XXX+ is not an OMEP. Let’s see if we can reduce J2 by switching elements
in ccc; using equation 1.6 we find that

∆(1,3) = 2,

thus if we switch the first and third elements of column ccc with each other then we will reduce
J2(XXX+) by 4. The new column ccc with the first and third elements switched is

ccc =


1
0
0
1

 .

The augmented matrix will be

X+ =


0 0 1
0 1 0
1 0 0
1 1 1

 ,

and
J2(XXX+) = 10−2∆(1,3) = 6.

As we switched rows 1 and 3, then we have to switch elements
{

δa=1,2(ccc)↔ δb=3,2(ccc)
}

,{
δa=1,4(ccc)↔ δb=3,4(ccc)

}
,
{

δ2,a=1(ccc)↔ δ2,b=3(ccc)
}

and
{

δ4,a=1(ccc)↔ δ4,b=3(ccc)
}

.
The updated δδδ (ccc) is

δδδ (ccc) =


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


and

δδδ (XXX+) = δδδ (XXX)+δδδ (ccc) =


2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

+


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

=


3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3


Since J2(XXX+) = L(3), then X+ is an OMEP, and we can see that by switching elements in our
new column we were able to get an orthogonal matrix.
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1.3.2 Non-level-balanced columns

If the number rows, Nc is not divisible by the number of levels of an attribute k, ℓk, then the column
corresponding to attribute k will not be level balanced. In this case we want to get a column that
is as level balanced as possible, to do this we will use Integer Linear Programming to find the
number of times each level appears in the column. We define the variable xl as the number of
times level l appears in our current column. In Operations research language we need to define
our Objective function (what we want to maximize/minimize), and our constraints. For ℓk levels
we have

Minimize shi f t (1.7)

subject to

ℓk

∑
l=0

xl = Nc (1.8)

xl ≤
⌊

Nc

ℓk

⌋
+ shi f t ∀ l = 0,1, . . . , ℓk −1 (1.9)

xl ≥
⌊

Nc

ℓk

⌋
∀ l = 0,1, . . . , ℓk −1 (1.10)

where ⌊⌋ is the floor function. Here we want to minimize the difference between the number of
times each level appears. We will call the set of the number of times each level appears in column k
as partitionk, partitionk = {x0,x1, . . . ,xℓk−1}. These solutions can be found using Integer Linear
Programming Libraries. For example, in python we can use the ortools.sat.python library, see
“https://developers.google.com/optimization/cp/cp solver”. If Nc is divisible by ℓk, then

partitionk,l =
Nc

ℓk
∀ l = 0,1, . . . , ℓk −1 (1.11)

1.3.3 The algorithm

Having defined equations 1.1, 1.2, 1.3, 1.5 and 1.6 we can detail the algorithm presented by Xu
[3]. For Nc alternatives with Na attributes, where the kth attribute has ℓk levels and weight ωk:

1. Calculate the lower bounds L(k) for k = 1,2, . . . ,Na using equation 1.3.

2. Create an initial design XXX with two columns and Nc rows, these columns have the following
structure

XXX1 =



0 0
...

...
0 ℓ2 −1
1 0
...

...
1 ℓ2 −1

ℓ1 −1 0
...

...
ℓ1 −1 ℓ2 −1


.
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Calculate δi, j(XXX) using equation 1.1 and J2(XXX) using equation 1.2. If J2(XXX) = L(2) let
n0 = 2, otherwise n0 = 0.

3. For k = 3, . . . ,Na:

(a) Randomly generate a column as level balanced as possible, ccc, with ℓk levels where
each level appears as indicated by partitionk. Calculate δi, j(ccc) using equation 1.1.
Calculate J2(XXX+) by

J2(XXX+) =
Nc−1

∑
i=1

Nc

∑
j=i+1

[
δi, j(XXX)+δi, j(ccc)

]2
,

if J2(XXX+) = L(k) got to (d), else go to (b).

(b) Using equation 1.6 find the largest ∆(a,b). If ∆(a,b) > 0, exchange rows a and b in
ccc, reduce J2(XXX+) by 2∆(a,b), and update δi, j(ccc) by switching {δa, j(ccc)↔ δb, j(ccc)} and
{δ j,a(ccc)↔ δ j,b(ccc)} for all j ̸= a,b. If J2(XXX+) = L(k) go to (d), else repeat (b) until the
largest ∆(a,b)≤ 0.

(c) Repeat (a) and (b) T times and choose the column ccc that results in the smallest J2(XXX+).
T is a constant defined by the user, Xu [3] recommends T = 100.

(d) Append column ccc as the kth column of XXX , let J2(XXX) = J2(XXX+), and update δi, j(XXX) using
equation 1.5. If J2(XXX) = L(2) let n0 = k.

4. The final design will be a Nc ×Na matrix XXX where the first n0 columns form an orthogonal
array.

1.3.4 Algorithm remarks

1. In order to get a level balanced design it is necessary that Nc is a common multiple of the
number of levels of the attributes. If not possible, we try to get an Nc that is divisible to as
many attributes as possible.

2. In order to get a level balanced orthogonal design, Nc has to also be a common multiple of
the number of level combinations of the attribute combinations, see beginning of section 2.
Now, this is a necessary but not sufficient condition. For example, if we had four 2 level
attributes, then there is no orthogonal array with 4 rows, even though 4 is a multiple of the
number of levels and of the number of level combinations.

3. According to Xu [3], the algorithm works best if the attributes are ordered in descending
number of levels. In the case where Nc is not a multiple of all the number of levels of the
attributes, I recommend placing the attributes that are not divisible by Nc at the end.

4. In order to relate J2 to the A2 criterion the user should use natural weights, see equation 1.4.

5. Conjoint designs can also incorporate level pairing prohibitions, alternative inclusions and
exclusions. These will be addressed in the next section.
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1.4 Constraints

In conjoint experiments it is sometimes necessary to specify level combinations or alternatives
that cannot be included in the design, and alternatives that must be included in the design. For this
we will use equation 1.4 to find the A2 criterion. For a level balanced design XXX with Nc rows and
Na columns using natural weights we have that

A2(XXX) =
J2(XXX)

N2
c

− 1
2Nc

NcNa(Na −1)+Na

Na

∑
k=1

ℓk −

(
Na

∑
k=1

ℓk

)2
 , (1.12)

we will look for designs that minimize A2(XXX). If the design is not level balanced then we will look
for designs that minimize J2(XXX). For clarity we will refer to the algorithm in section 1.3.3 as the
base algorithm.

1.4.1 Alternative inclusions without excluded level combinations

Users can specify alternative that must be included in the experiment. For example, if we have
attributes and levels

Attribute Brand Colour Type
Level 1 Chevrolet Black Sedan
Level 2 Toyota White Hatchback
Level 3 Nissan Red Pickup

and we need to include the products {Toyota, White, Hatchback} and {Nissan, White, Sedan}. To
have these inclusions in our design we need to do a few tweaks to our base algorithm. The idea
is to place the must include alternatives in the first rows of our design. Hence, at step 2. of our
algorithm, we generate the first column as indicated, but after this column has been created we
move the levels involved in the alternative inclusions to the beginning of the column. For example,
for our cars inclusions using index notation we need to include alternatives {1, 1, 1} and {2, 1, 0},
we will put these alternatives in the first and second rows respectively. For Nc = 9 the first column
“Brand” following the base algorithm is

ccc =



0
0
0
1
1
1
2
2
2


now we will move level 1 and 2 to the top as these are the Brand levels in our product inclusions,
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the first column becomes

ccc =



1
2
0
0
0
1
1
2
2


Then we don’t generate the second column as indicated in the base algorithm but we jump to step
3 where we start at k = 2 instead of k = 3. In step (a) we generate a level balanced random column
and move the levels in inclusions to the beginning. And in step (b) we calculate the largest ∆(a,b)
given that a and b are not part of the first rows that have to do with level inclusions. The rest of
the algorithm is not changed.

1.4.2 Excluded level combinations

Users can specify level combinations that cannot appear in the alternatives, this makes it impos-
sible to construct an OMEP because level pairs will not have the same number of appearances.
To construct a design with excluded level combinations we first identify the attributes that are in-
volved in exclusions. We will call them attributes with exclusions. We will construct a design for
the attributes without exclusions following the base algorithm. After we obtain this initial design
we will follow a similar approach to the base algorithm were we add new columns successively,
but now step 3(a) has to be adapted such that we can generate columns that do not violate the
exclusions. To achieve this we will use Integer Linear Programming to generate a set of columns
that accommodate our constraints. In addition, if we have alternatives that must be included we
will follow the same approach as above where we will place the levels in inclusions in the first
rows of the design.

Candidate column generation

Given a Nc × n array XXX , where n < Na, we want to add a new column ccc corresponding to the kth
attribute with ℓk levels. This column has to be generated such that specified level combinations do
not appear in XXX+ (XXX+ is array XXX with column ccc appended at the end). We start by identifying the
rows that level l = 0,1, . . . , ℓk −1 cannot occupy. We identify these rows by looking at XXX and find
the rows that when adding level l will cause a violation of the level exclusions. For example, let’s
say we have array

X =


0 0
0 1
1 2
1 0
2 1
2 2


we have the restriction that level 2 of the second column cannot be paired with level 0 of the third
column, and that the third column has 2 levels. As such we cannot place level 0 on the third and
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sixth rows of the new column because level 2 occupies the third and sixth rows in the second
column of XXX .

We define variable exclusionsl which is a set containing the row indices that level l cannot be
placed at. For our example above

exclusions0 ={3,6}
exclusions1 ={}

In the case of product inclusions we define the variable inclusionsl , which contains the row indices
that level l must be placed at. Let’s say we have one product inclusion which has l = 1 at column
k, following our convention of placing must include alternatives at the beginning of the design we
have to place level 1 in the first row as such

inclusions0 ={}
inclusions1 ={1}

we also define variable xi,l where i = 1,2, . . . ,Nc and l = 0,1, . . . , ℓk −1 such that

xi,l =

{
1 if level l is in row i
0 otherwise

(1.13)

We also need to calculate the partition of the current column, partitionk, as defined in Section
1.3.2. With these we define our constraints to generate our candidate columns

ℓk

∑
l=0

xi,l = 1 ∀ i = 1,2, . . . ,Nc (1.14)

Nc

∑
i=1

xi,l = partitionk,l ∀ l = 0,1, . . . , ℓk −1 (1.15)

xi∈exclusionsl ,l = 0 ∀ l = 0,1, . . . , ℓk −1 (1.16)
xi∈inclusionsl ,l = 1 ∀ l = 0,1, . . . , ℓk −1 (1.17)

we find all feasible solutions up to T solutions (T is the number of times we repeat step 3 of the
base algorithm). Our columns are constructed as

c=

 {l|x1,l = 1}= {0,1, . . . , ℓk −1}
...

{l|xNc,l = 1}= {0,1, . . . , ℓk −1}

 .

These solutions can be found using Integer Linear Programming Libraries. For example, in python
we can use the ortools.sat.python library, see “https://developers.google.com/optimization/cp/cp solver”.
These will be our candidate columns at k.

Algorithm with excluded level combinations

The algorithm to generate a design with excluded level combinations with or without “must in-
clude alternatives” is as follows:
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1. With the attributes that are not involved in exclusions get a set of up to Ti designs {XXX1, . . . ,XXXTi},
using the base algorithm. We let Nne

a be the number of columns in these initial designs and
Ne

a the number of attributes involved in exclusions, Nne
a +Ne

a = Na.

2. For the attributes involved in exclusions, get Tr random orderings of these attributes, Tr is a
constant to be defined by the user. For example, if we have attributes “Color”, “Size” and
“Price”, we could have: {Color, Price, Size}, {Size, Color, Price}, {Price, Size, Color}. For
each random set we randomly select one of the designs obtained in step 1., and calculate the
lower bounds L(k) for k = Nne

a +1, . . . ,Ne
a . Then:

(a) For k = 1,2, . . . ,Ne
a :

i. Generate up to T feasible columns given constraints on attribute k as detailed in
section 1.4.2. If no feasible columns can be generated, let k = 1 and go to the next
set generated in step 2.

ii. Randomly choose one of the feasible columns, calculate δi, j(ccc) using equation
1.1. Calculate J2(XXX+) by

J2(XXX+) =
Nc−1

∑
i=1

Nc

∑
j=i+1

[
δi, j(XXX)+δi, j(ccc)

]2
,

if J2 = L(Nne
a + k) go to v. else go to iii.

iii. If the number of feasible columns is less than T go to v., else using equation 1.6
find the largest ∆(a,b), such that the switch between rows a and b does not violate
constraints, i.e. the switch should not generate excluded pairs, and rows involved
in alternatives inclusions must not be considered. If ∆(a,b)> 0, exchange rows a
and b in ccc, reduce J2(XXX+) by 2∆(a,b), and update δi, j(ccc) by switching {δa, j(ccc)↔
δb, j(ccc)} and {δ j,a(ccc)↔ δ j,b(ccc)} for all j ̸= a,b. If J2(XXX+) = L(Nne

a + k) go to v.,
else repeat iii. until the largest ∆(a,b)≤ 0.

iv. Repeat ii. and iii. until all generated columns in step i. are exhausted and choose
the column ccc that results in the smallest J2(XXX+). T is a constant defined by the
user, Xu [3] recommends T = 100.

v. Append column ccc as the kth column of XXX , let J2(XXX) = J2(XXX+), and update δi, j(XXX)
using equation 1.5. If J2(XXX) = L(Nne

a + k) let n0 = Nne
a + k.

(b) Repeat step (a) until all Tr sets generated in step 2. are exhausted, for each of these
designs calculate A2 using equation 1.12. Choose the designs with the lowest A2 (J2 if
design is not level balanced). Calculate the number of unique rows for these selected
designs, and choose the designs with the largest number of unique products.

1.4.3 Alternative exclusions

In the case of having alternative exclusions, we will generate a set of designs following the al-
gorithms defined above and reject the designs that have the excluded alternatives, this is possible
due to the large amount of potential products a design can have. In the case we can’t obtain a
design without the excluded alternative we will get the design with the lowest A2 (J2 if design is
not level balanced) and the highest number of unique alternatives and we will simply remove the
alternatives that must be excluded.
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1.5 Construction of choice sets

Once we have our alternatives, we need to group them in choice sets that will be shown to the
respondents. What we want to achieve are choice sets with some level overlap (alternatives with
some of their levels being the same) and utility balanced sets (i.e. alternatives within a choice set
should have similar utilities). Utility balance is only possible if there is some a priori ordering
to the levels. For example, usually cheaper prices have higher part worths than more expensive
prices; therefore, we would prefer to gather cheaper products with other cheaper products, and ex-
pensive products with other expensive products. Finally, if we have repeated alternatives a choice
set must not have any repeated alternatives. To construct the choice sets we will use simulated
annealing, a concept borrowed from physics.

1.5.1 Simulated annealing

Annealing is a heat treatment where materials are heated up to a certain temperature and then
cooled down, this treatment is used to change the physical properties of materials. Our simulation
follows a similar approach, where we start at a given “temperature” and switch alternatives be-
tween choice sets such that we try to get our system to its minimum energy state. The probability
of switching alternatives depends on how the energy changes, a switch that decreases the energy is
favored over one than increases the energy. Temperature also affects the switching probability, at
higher temperatures, switches are more frequent than at lower temperatures. The higher switching
frequency reduces the probability of getting trapped in a local minimum, and as we decrease the
temperature the system settles in a energy state.

We are going to treat our “stated choice experiment” as if it were a physical system. In our
physical world systems tend to be at states that minimize their energy; therefore, we need to define
the energy of our system such that the minimum energy state is an experiment with utility balanced
choice sets that have the desired amount of level overlap. For Nc alternatives, choice set size Nset ,
and Ng choice sets, we define the energy of our system as

E =
Ng

∑
i=1

Ei (1.18)

where Ei is the energy of the ith choice set,

Ei =
1

Nset

Nset

∑
j=1

(
utilityi, j − avg-utilityi

max-utility

)2

+
1

Na

Na

∑
k=1

(
overlapi,k −opt-overlap

Nset −1

)2

(1.19)

here utilityi, j is the utility of the jth alternative in the ith choice set, avg-utilityi is the average
utility of the ith choice set, max-utility is the maximum possible utility. overlapi,k is the number
of times a level in attribute k is repeated in the ith choice set; for example, if the first choice set of
an experiment is:

Brand Colour Type
Alternative 1 Chevrolet Black Hatchback
Alternative 2 Toyota Black Hatchback
Alternative 3 Nissan White Hatchback

,
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we can see that Black appears twice so for Colour we have a level that is repeated one time,
Hatchback appears three times so for Type we have a level that is repeated two times, and for
brand we do not have any repeated levels. Thus,

overlap1,1 = 0

overlap1,2 = 1

overlap1,3 = 2

opt-overlap is the desired number of times we would like to see levels being repeated per attribute
in a choice set. The first part of the energy is minimized when all alternatives in a choice set have
the same utility. The second part of the energy is minimized when levels per attribute are repeated
opt-overlap number of times.

The acceptance ratio of switching a pair alternatives between choice sets is given by

A(µ → ν) = min
(

1,e−
E(ν)−E(µ)

T

)
(1.20)

where µ is the system before the switch and E(µ) its corresponding energy, ν is the system after
the switch and E(ν) its corresponding energy, and T is the temperature. Thus, for Nc alternatives
with Na attributes and choice set size Nset , the algorithm goes as follows

1. Define starting temperature Ti, temperature step ∆T , final temperature Tf > 0.0. Randomly
assign alternatives to Ng = Nc/Nset choice sets, making sure alternatives are not repeated
within sets. Calculate the energy of each choice set following equation 1.19, and let T = Ti.

2. For 20Nc times:

(a) Randomly choose two alternatives that are in different choice sets, i ̸= j; making sure
alternative in choice set j is not in choice set i, and alternative in choice set i is not in
choice set j.

(b) Calculate the energy of choice sets i and j as if the selected alternatives were switched,
we will refer to these energies as E(new)i and E(new) j; and to the energies before the
switch as E(old)i and E(old) j.

(c) Calculate the change in energy given by the switch

∆E = E(new)−E(old) = E(new)i +E(new) j −E(old)i −E(old) j

(d) If ∆E < 0 go to (e), else calculate ω = e−∆E/T . Generate ξ from a uniform distribution
[0,1), if ξ ≤ ω go to (e), else go to (a).

(e) Switch the randomly selected alternatives between groups, and set Ei = E(new)i and
E j = E(new) j. Go to (a).

3. Subtract ∆T from T , if the new T < Tf stop, else go to 2.

It is important to note that the resulting stated choice experiment will not always be the lowest
energy state given the stochastic nature of the method, but it will have utility balanced choice sets
that have the desired amount of level overlap.
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1.5.2 A priori utilities

In order to generate utility balanced choice sets we need to have an idea of the utilities of each
alternative. For a given alternative, the user might have an idea of which levels are more pre-
ferred than others; for example in the case of price, cheaper values tend to be preferred over more
expensive values.

If the hierarchy of the levels of an attribute is not clear, all the levels’ part worths for that
attribute are set to zero. On the other hand, if there is a notion of the ordering of the levels within
an attribute, we order the levels from “least preferred” to “most preferred”, we assume that the
part worths are equally spaced, we set the part worth of the “least preferred” level to -1 and the
part worth of the “most preferred” level to 1. For example, if we had an attribute with five levels,
then the part worths are set as

Part worths
Level 1 -1.0
Level 2 -0.5
Level 3 0.0
Level 4 0.5
Level 5 1.0

The utilities of the alternatives are calculated by adding up the part worths of the levels making
up the alternatives. The max-utility that we use in equation 1.19 is equal to the number of attributes
that have ordered levels.
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Chapter 2

Utility estimation

After we collect our responses for the choice sets as defined in Chapter 1, we need to obtain the
respondents’ part worths. To do this we will use a Hierarchical Bayes Multinomial Logistic Model
(HB MNL). This model has two levels [5, 6, 7, 8]:

1. At the upper level we assume that the part worths are described by a multivariate normal
distribution.

2. At the lower level we assume that the individual’s probabilities of choosing an option, given
the individual part worths, are described by a multinomial logistic model [2].

2.1 Effects coding

In order to estimate the respondents’ part worths we first need to code our levels. We could use
dummy coding where we describe each product with a vector of 1s and 0s, where each element
represents a level; a 1 in the position of a level means that that level is included in that product,
and a 0 otherwise. For example, if we have one attribute called “size”, whose levels are {small,
medium, large}, we will have a vector with three elements, where we can have the following
products

Small Medium Large
Product 1 (small) 1 0 0

Product 2 (medium) 0 1 0
Product 3 (large) 0 0 1

Table 2.1: Dummy coding of a three level attribute

The issue with this approach is that the variables are linearly dependent, i.e. the state of one of the
attributes can be determined by the state of the other two. Following our example, if the product
is not “small” neither “medium” then it must be “large”. To solve this we will use effects coding
where for each attribute we choose one level arbitrarily to be the reference level, and constraint
the part worth of this level to be equal to the difference of the part worths of the other levels within
their attribute [8]. For our example above, we choose Large to be the reference level, thus we
have:
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Small Medium
Product 1 (small) 1 0

Product 2 (medium) 0 1
Product 3 (large) -1 -1

Table 2.2: Effects coding of a three level attribute

By using effects coding, the part worths within each attribute are zero centered. We will use
this type of coding, and choose the reference level to be the last level of each attribute as defined
by the user. Given this coding the number of parameters we have to find is equal to the total
number of levels minus the number of attributes:

nind =
Na

∑
k=1

ℓk −Na (2.1)

where Na is the number of attributes and ℓk is the number of levels in the kth attribute.

2.1.1 Coding the None option

In some cases the user, if having the choice, will decide that they would not purchase any of
displayed products, in this scenario we can have an alternative be “None of these”. As such, how
do we code this? The solution is to all other level columns to 0, add a column for None, and set it
to 1. Following our size example, our products with the none alternative will look something like
this

Small Medium None
Product 1 (small) 1 0 0

Product 2 (medium) 0 1 0
Product 3 (large) -1 -1 0

None of the others 0 0 1

Table 2.3: Effects coding of a three level attribute with the None alternative

Here we can see that the “None” attribute does not have a reference level, and it is simply a
one level attribute. This way we can also determine the utility of the “None” alternative. Here, it
is important to note that the only attribute that can have one level is the None attribute. We can
thing of this as being the “None” product

2.2 Model

The individual part worths are independently and identically distributed from a multinomial nor-
mal distribution, Nnind(γγγ,VVV ). Where γγγ is a nind dimensional row vector of means of the respon-
dents’ part worths, VVV is a (nind ×nind) matrix of variances and covariances of the individuals’ part
worths. We define βββ i as a nind dimensional row vector, where the elements are the part worths of
the ith respondent, and for Nres respondents we let βββ = {βββ 1,βββ 2, . . . ,βββ Nres} be the set containing
all the individual part worths.
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Following a multinomial logistic model, the probability of the ith individual choosing the qth
product within the jth choice set given part worths βββ i is defined as [2, 7, 8]

pi, j(q|βββ i) =
eβββ i·xxxi, j,q

∑k eβββ i·xxxi, j,k
(2.2)

where xxxi, j,k is the effects coded kth product within the jth choice set shown to the ith respondent.
In order to estimate γγγ , VVV , and βββ we use an iterative process. We initialize γγγ and βββ i as zero

vectors. We initialize the elements vi, j of VVV as:

vi,i =
ℓk −1
ℓk

level i ∈ attribute k (2.3)

vi, j =− 1
ℓk

if i̸= j and {level i and level j} ∈ attribute k (2.4)

vi, j =0 if level i, level j belong to different attributes (2.5)

Each iteration consists of three steps:

1. Given the current estimates of βββ , and VVV we generate a new γγγ by drawing randomly from
a multivariate normal distribution, Nnind(mean(βββ ),V× 1/Nres), with mean vector equal to
the mean of βββ and variance covariance matrix equal to VVV ×1/Nres [5, 6, 7].

2. Given the current estimates of βββ and γγγ we generate a new VVV by drawing randomly from
an inverse Wishart distribution, W −1(d f ,SSS), with degrees of freedom d f = Nres+nind , and
scale matrix SSS [5, 6, 7] given by

SSS = nind ×III +
Nres

∑
i=1

(βββ i −γγγ)T (βββ i −γγγ) (2.6)

where T stands for “transpose” and III is an identity matrix of order nind .

3. Given the current estimates of γγγ andVVV we generate βββ from a multivariate normal distribution
which has variance covariance matrix proportional to VVV , for this we use the Metropolis
Hastings Algorithm described bellow [5, 6, 7].

We repeat these steps for a given number of iterations until equilibration is reached. We divide the
simulation in three stages, an adaptive stage, an equilibration stage, and a measurement stage.

1. Adaptive stage: During this stage we run the simulation for 3000 iterations to estimate the
proportionality factor used in the Metropolis Hastings Algorithm.

2. Equilibration stage: During this stage, we run the simulation for a few thousand iterations
where we will use the likelihood ratio index, also known as the McFadden pseudo R2, R2

Mc
[2] to determine equilibration. This value increases as the number of iterations grows, but
after a while it stabilizes, i.e. it randomly oscillates around a mean value, we take this
stabilization to indicate that the system reached equilibrium.

3. Measurement stage: After equilibration has been reached, we run the simulation for 10 000
steps, we accumulate the individual βββ is skipping 5 steps between measurements and at the
end we get the average of these βββ is, the resulting averages of the βββ is will be the estimates
of the respondents’ part worths.
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2.2.1 Metropolis Hastings Algorithm

For each respondent we draw a random nind dimensional row vector bbb from a multivariate normal
distribution Nnind(000,VVV × f ), with zero mean and variance covariance matrix equal to VVV times an
scaling factor f . For the ith respondent, the new proposed part worths vector, βββ n

i , is equal to their
last estimated part worths vector, βββ o

i , plus bbb

βββ
n
i = βββ

o
i +bbb. (2.7)

The probability of accepting this new estimate is given by

pi(o → n) = min(1,ri), (2.8)

ri is the ratio

ri =
L(βββ n

i )

L(βββ o
i )

×
ρ(βββ n

i ;γγγ,VVV )

ρ(βββ o
i ;γγγ,VVV )

, (2.9)

and L(βββ n
i ) and L(βββ o

i ) are the likelihoods of the ith respondent answers given βββ n
i and βββ o

i respec-
tively. These likelihoods are calculated by multiplying the probabilities of the responses of the ith
user

L(βββ i) =
Ng

∏
j=1

pi, j(q j|βββ i) (2.10)

where Ng is the number of choice sets seen by the respondents, and q j is the index of the product
chosen by the respondent in the jth choice set.

ρ(βββ n
i ;γγγ,VVV ) and ρ(βββ o

i ;γγγ,VVV ) are the densities of the Nnind(γγγ,VVV ) distribution at points βββ n
i and βββ o

i
respectively,

ρ(βββ i;γγγ,VVV ) =
1

(2π)nind/2 det(VVV )1/2 e
(
− 1

2 (βββ i−γγγ)VVV−1(βββ i−γγγ)T
)

(2.11)

with this definition we can write r as

ri =
L(βββ n

i )

L(βββ o
i )

× e
(
− 1

2 (βββ
n
i −γγγ)VVV−1(βββ n

i −γγγ)T+ 1
2 (βββ

o
i −γγγ)VVV−1(βββ o

i −γγγ)T
)

(2.12)

if ri ≥ 1 it means that the posterior probability of βββ n
i is larger than the posterior probability of βββ o

i
and we accept βββ n

i as the next estimate of the part worths for the ith respondent. If ri is less than
one, we accept βββ n

i with probability equal to ri, to do this we generate a random number ξ in the
range [0,1), if ξ ≤ ri we accept the new estimate, otherwise we keep βββ o

i as the next estimate.

Scaling factor f

The scaling factor f can be determined by the proportion of accepted βββ n
i s per iteration. According

to [6], the optimal acceptance ratio is 0.44 for a one dimensional βββ i, and declines to about 0.23
for dimensions larger than 5. As such we will take the optimal acceptance ratio to be 0.23. As
indicated above, we use the adaptive stage to determine the value of f that will be used in the
equilibration and measurement stages [6].

In the adaptive stage we will start by arbitrarily setting f = 0.25, we let ns be the number of
times β n

i was accepted after each iteration of the HB MNL algorithm, and we calculate the success
ratio as

rs =
ns

Nres
. (2.13)
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If rs < 0.23, then we reduce f by ten percent and continue to the next iteration, if rs > 0.23 we in-
crease f by ten percent and continue to the next iteration; we repeat this for 3000 iterations. These
iterations will give us an estimate of f that we will use during the equilibration and measurement
stages. In the equilibration and measurement stages we do not change the value of f .

Given that the value of f fluctuates quite rapidly, see for example Fig. 2.1, and takes some
time to settle, we discard the first 1500 iterations, and keep the last 1500. We use the iterations
that we kept and take the average, this average is the value that we will use as f in the next stages.

Figure 2.1: f factor for successive iterations of a conjoint experiment with 3 attributes and 3 levels
each.

2.2.2 Likelihood ratio index

The likelihood ratio index R2
Mc is defined as [2]

R2
Mc = 1− ln(Lt(βββ ))

ln(Lt(βββ null))
(2.14)

where Lt(βββ ) is the value of the total likelihood using the estimates of the part worths, βββ , and
Lt(βββ null) is the value of total the likelihood if we set all part worths equal to zero. The total
likelihood is equal to the product of the individual likelihoods,

Lt(βββ ) =
Nres

∏
i=1

L(βββ i), (2.15)

Lt(βββ null) corresponds to the case when all products have equal probability of being chosen. For
example, if we had 5 choice sets, with 3 products per choice set the probability of choosing an
individual product within a set is 1/3, therefore the individual likelihoods will be equal to

L(000) =
5

∏
i=1

1
3
=

1
35 (2.16)
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as such the total likelihood is

Lt(βββ null) =
Nres

∏
i=1

1
35 =

1
35×Nres

(2.17)

In general, for Ng choice sets, with Nset alternatives each, for Nres respondents,

Lt(βββ null) =
1

NNg×Nres
set

(2.18)

so, we can write the likelihood ratio index as

R2
Mc = 1− ln(Lt(βββ ))

ln
(

1
N

Ng×Nres
set

) = 1− ln(Lt(βββ ))

ln(1)− ln
(
NNg×Nres

set
) = 1+

ln(Lt(βββ ))

Ng ×Nres ln(Nset)
(2.19)

If our model was no better than a completely random model where all products have the same
probability of being chosen, then Lt(βββ ) = Lt(000), and R2

Mc = 0. This is the lowest value R2
Mc

can take [2]. Now, if our model was perfect, i.e. it could perfectly predict the choices of each
respondent, then Lt(βββ ) = 1 and ln(Lt(βββ )) = 0, therefore R2

Mc = 1. This is the highest value R2
Mc

can take.
It is not possible to compare the R2

Mc for two models that use different samples, or that use
different choice sets for the sampled individuals. For example, we can not say that a model with
R2

Mc = 0.8 is better than a model with R2
Mc = 0.6 that uses a different sample. But, we can compare

the R2
Mc of two models that use exactly the same sample, in that case we can say that the model

with R2
Mc = 0.8 fits the data better than the model with R2

Mc = 0.6. This is important because
in our Monte Carlo simulation, R2

Mc tends to increase as the number of iterations grows until a
certain point where it settles and oscillates around a mean value, see for example Fig. 2.3; i.e.
after successive iterations our model fits the data better and better, until it settles. After this value
settles we say that we have reached equilibrium and we can start taking measurements for βββ . In
the following section I define how we can determine equilibration.
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Figure 2.2: R2
Mc for successive iterations of a conjoint experiment with 3 attributes and 3 levels

each

2.2.3 Equilibration

There is no perfect way of determining convergence for a Monte Carlo simulation [9], here we are
going to use the Geweke Diagnostic, and the moving average of R2

Mc.

Geweke Diagnostic

Geweke recommended using a method based on spectral analysis to assess the convergence of a
Markov Chain Monte Carlo process [9, 10]. For details on this method we encourage the reader to
see [9, 10]. This method consists on comparing the means of the beginning and end of a Markov
chain to detect if they are significantly different. The Geweke statistic is calculated by

Zn =
θ A −θ B√

SA(0)
nA

+ SB(0)
nB

(2.20)

where Zn approaches the standard normal distribution as the number of points in the Markov chain
approaches infinity [10]. As such, large values of Zn indicate that the process has not converged,
using a 1% confidence level, we say that the process has not converged if |Zn|> 2.6.

Now let’s look at the individual parts of Eqn. 2.20. As stated above, we are going to use R2
Mc

to assess convergence, as such a Markov chain will consist of N consecutive estimates of R2
Mc, i.e.

we save the value of R2
Mc after every iteration for N iterations, and we call this chain θθθ . Now we

split this chain in two parts, chain A, θθθ A, and chain B, θθθ B. θθθ A is made of the first 0.1N elements
of θθθ , and θθθ B is made of the last 0.5N elements of θθθ . The length of θθθ A will be denominated as NA
and the length of θθθ B as NB, as such

θ A =

NA
∑

i=1
θA,i

NA
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θ B =

NB
∑

i=1
θB,i

NB

where θA,i and θB,i are the ith elements of θθθ A and θθθ B respectively.
SA(0) and SB(0) are the spectral densities of the chains at zero frequency. To estimate the

spectral densities we are going to use the approach defined by Heidelberger and Welch [11]. We
start by defining

I(n,θθθ) =
1
N

[(
N

∑
i=1

θi cos
(

2π(i−1)n
N

))2

+

(
N

∑
i=1

θi sin
(

2π(i−1)n
N

))2]
, (2.21)

where N is the length of θθθ .

J(n,θθθ) = 0.270+ ln
(

1
2
[
I(2n−1,θθθ)+ I(2n,θθθ)

])
, (2.22)

f (n,N) =
4n−1

2N
. (2.23)

Now, given a Markov chain θθθ of length N we let K = ⌊N/4⌋ (⌊·⌋ is the floor function) and:

1. Calculate J(n,θθθ) for n = 1,2, . . . ,K.

2. Calculate f (n,N) for n = 1,2, . . . ,K.

3. Using least squares, we fit the polynomial

g( f (n,N)) = a0 +a1 f (n,N)+a2 f (n,N)2 +a3 f (n,N)3 (2.24)

to J(n,θθθ).

4. Define matrix

XXX =

 f (1,N)0 f (1,N)1 f (1,N)2 f (1,N)3

...
...

...
f (K,N)0 f (K,N)1 f (K,N)2 f (K,N)3

 (2.25)

5. Calculate
SSS = (XTXTXTXXX)−1 (2.26)

6. We let
σ

2 = 0.645×S1,1 (2.27)

where S1,1 is the upper most left element of SSS.

7. Finally, our estimate of the spectral density at zero frequency for θθθ is

S(0) = e−σ2/2+a0 (2.28)
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Exponential moving average

Given the high frequency oscillations of R2
Mc as time passes, we need a way of smoothing out

these fluctuations. Here we calculate a series of averages at different subsets of the full time series
in order to smooth out short-term fluctuations. The moving average will allow us to recognize
long term patterns in our data in order to check if the R2

Mc has settled to an stable value.
We calculate the exponential moving average at the ith iteration using formula

averagei = 0.99×averagei−1 +0.01×R2
Mc (2.29)

where R2
Mc is the likelihood ratio index at the i iteration. The average is initialized by taking the

the value of R2
Mc at i = 0. For an example see the following figure where the moving average is

plotted the R2
Mc for successive iterations

Figure 2.3: R2
Mc and its moving average for successive iterations of a conjoint experiment with 3

attributes and 3 levels each

Assessing equilibration

Now that we have defined our metrics we can discuss how to assess if the process has equilibrated.
We run the equilibration stage for 20 000 iteration, and discard the first 10 000 iterations. We
divide the remaining iteration into 10 chains of 1000 iterations each, we calculate the Geweke
statistic for each chain and count how many of them is within the range {-2.6, 2.6}. We also
calculate the moving averages of this chain and calculate the standard deviation of the averages.
We say that the simulation has equilibrated if the number of Geweke statistics within the range
{-2.6, 2.6} is equal or larger than 5 and if the standard deviation of the moving averages is less
than 0.025. If not, we run the simulation for an extra 10 000 iterations and repeat this process.
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2.3 Sample size

One important question we need to consider is: What should my sample size be? This is not an
easy question, and multiple rules of thumb have been proposed. Peduzzi et al. [7, 12], with respect
to logit models, recommend the following sample size

Nres ≥ 10
nind

Ng pmin
(2.30)

as defined above, nind is the total number of levels minus the number of attributes, Ng is the number
of choice sets seen by each respondent. pmin is the probability of the least chosen option in all
sets; we usually do not know this probability a priori, as such we could assume that all choices are
equally likely (this could be a good assumption for a utility balanced design). For example, if each
set had 3 products, then pmin = 0.333. The problem comes when the utilities are not balanced, in
such cases pmin < 1/Nset (Nset : number of products per choice set).

Orme and Chrzan [7] recommend a sample size given by

Nres ≥ 1000
ℓmax

k
Nset ×Ng

(2.31)

where ℓmax
k is the maximum number levels in any attribute.

We can also consider the desired margin of error of the shares of preference [7], if we assume
that the shares of preference are proportions and that their errors follow a normal distribution, then
the estimated error is given by

error =±zα/2

√
p̂(1− p̂)

Nres
(2.32)

where p̂ is the estimated proportion, and zα/2 is the standardized score corresponding to two tailed
confidence level 1−α . For α = 0.05, z = 1.96. Now for Nres < 1000, we usually use the t-score
obtained from a Student’s distribution where t > z. Since we are only interested in estimates we set
z = 2, and we consider values of Nres > 60 as valid. Taking a conservative approach, we consider
the value of p̂ at which the error is a maximum, this value corresponds to p̂ = 0.5. As such, our
expression reduces to

error =±
√

1
Nres

(2.33)

therefore, given a desired error, our sample size is

Nres =
1

|error|2
. (2.34)

For example, let’s say we want our market share estimates be accurate to within ±5% or less, then
our sample size should be

Nres ≥
1

0.052 = 400. (2.35)

Notice that this number is inversely proportional to the square of the error, as such doubling our
error means that our sample size decreases by a factor of 4. As a visual aid, I include the error for
different sample sizes in the following table
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Nres error
50 ±14.1%

100 ±10.0%
150 ±8.2%
200 ±7.1%
300 ±5.8%
400 ±5.0%
500 ±4.5%
600 ±4.1%
700 ±3.8%
800 ±3.5%
900 ±3.3%

1000 ±3.2%
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Chapter 3

Population segmentation

When running a conjoint experiment we will usually have respondents that come from different
segments. For example, if we run a study about carbonated drinks, we could have a segment
of people who like drinks with no sugar, another segment where people do not like the taste of
artificial sweeteners, and a segment where people are indifferent to sugar content. Let’s say we
are interested in launching a new zero-sugar drink, as such our target will be the people who like
no sugar drinks, and maybe also the people who are indifferent to sugar content, and we will be
interested in investigating the characteristics of these population segments. That is, we would like
to segment our surveyed population with respect to their responses to our conjoint experiment. A
priori, we do not know anything about the segments, thus we need a way of identifying differences
in our sample population. To divide people into segments with similar choice preferences we will
use latent class multinomial logit.

3.1 Latent class multinomial logit

Given a desired number of segments, this method outputs an estimate of the levels’ part worths
for each segment. We do not assume that each respondent absolutely belongs to a given group,
instead, each individual has a probability of belonging to each group. As the estimated part worths
of a specific segment increasingly align with an individual responses, the likelihood of belonging
to that segment also rises.

3.1.1 Method

For a given number of segments, Nseg, we need to obtain the part worths that defines each segment.
To do this we will use the method defined by Greene and Hensher [13, 14]. First we need some
definitions.

Following a multinomial logistic model, the probability of the ith individual choosing the qth
product within the jth choice set given part worths βββ s, corresponding to segment s, is defined as
[2, 7, 8, 13]

pi, j(q|βββ s) =
eβββ s·xxxi, j,q

∑k eβββ s·xxxi, j,k
(3.1)

and the likelihood of the ith respondent for a given segment s is calculated by multiplying the
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probabilities of their responses

Li(βββ s) =
Ng

∏
j=1

pi, j(q j|βββ i) (3.2)

where Ng is the number of choice sets seen by the respondents, and q j is the index of the product
chosen by the respondent in the jth choice set.

The respondents classification into the different segments is unknown, as such we define the
segment probabilities as logit probabilities

ps =
eθs

Nseg

∑
r=1

eθr

. (3.3)

Following Bayes’ theorem we obtain the posterior segment probabilities given a response i,

ps|i =
Li(βββ s)ps

Nseg

∑
r=1

Li(βββ r)pr

(3.4)

these probabilities allow us to classify each respondent into the different segments, i.e. we assign
respondent i to the segment which has the largest ps|i.

In order to find the part worths for each segment we will use the expectation–maximization
(EM) algorithm, to do this we let ui,s = 1 if respondent i is a member of segment s, and 0 otherwise,
and we treat these variables as unknown. Now the complete log likelihood of our sample is given
by [13]

ln(Lc) =
Nres

∑
i=1

Nseg

∑
s=1

[
ui,s ln

(
Li(βββ s)

)
+ui,s ln(ps)

]
(3.5)

The EM algorithm maximizes this log likelihood by the use of two steps, expectation (E) and
maximization (M). In the expectation step we obtain the expectation of the likelihood, E(ln(Lc)),
where we replace ui,s with ps|i in equation 3.5,

E
(

ln(Lc)
)
=

Nres

∑
i=1

Nseg

∑
s=1

[
ps|i ln

(
Li(βββ s)

)
+ ps|i ln(ps)

]
(3.6)

ps|i is calculated with our current estimates of βs and ps. In the maximization step we maximize
the log likelihood using the estimated ps|is. Conditioned to these probabilities, the expectation of
the log likelihood can be separated into two parts and we maximize them separately. The first part
of E(ln(Lc)) becomes a weighted log likelihood [13]

∂E(ln(Lc))

∂βββ s
=

Nres

∑
i=1

ps|i
∂ ln

(
Li(βββ s)

)
∂βββ s

= 0 (3.7)

using equations 3.1 and 3.2 we get the set of equations for each βs as

Nres

∑
i=1

ps|i
∂ ln

(
Li(βββ s)

)
∂βββ s

=
Nres

∑
i=1

ps|i

Ng

∑
j=1

[
xxxi, j,q j −

∑
Nset
k=1xxxi, j,keβββ s·xxxi, j,k

∑
Nset
k=1 eβββ s·xxxi, j,k

]
= 0 (3.8)
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Nres

∑
i=1

ps|i
∂ ln

(
Li(βββ s)

)
∂βββ s

=
Nres

∑
i=1

ps|i

[( Ng

∑
j=1

xxxi, j,q j

)
−
( Ng

∑
j=1

∑
Nset
k=1xxxi, j,keβββ s·xxxi, j,k

∑
Nset
k=1 eβββ s·xxxi, j,k

)]
= 0 (3.9)

where as before xxxi, j,q j is the chosen alternative by respondent i for set j, and Nset is the choice
set size. This is a vector equation as βββ s and xxxi, j,k are vectors, and we solve for each component of
βββ s.

The second part of the expectation maximization is given by [13]

∂E(ln(Lc))

∂θs
=

Nres

∑
i=1

ps|i
∂ ln(ps)

∂θs
= 0 (3.10)

using equation 3.4 we get

ps =

Nres
∑

i=1
ps|i

Nres
. (3.11)

Therefore in order to find the part worths for a given number of segments we follow these steps

1. We initialize each βββ s with random numbers, and let each ps = 1/Nseg.

2. We calculate the ps|is for each respondent given our current estimates of βββ s and ps.

3. We obtain new estimates of βββ s and ps by solving equations 3.9 and 3.11.

4. We assess if the process has converged, if not we return to step 2, else we stop. We say the
process has converged if the gain of the E(ln(Lc)), equation 3.6, is less than 0.01, i.e. if
E(ln(Lc)) has increased by less than 0.001 from the previous estimate.

We repeat the steps defined above for different initial βββ s and keep the simulation that gives us the
largest ln(Lc). We do this to avoid getting stuck in a local maximum. The highest log likelihood we
can get is Nres ∑s ps ln(ps), because if we could fit the data perfectly then the individual likelihoods
will all be 1 and ln(1) = 0.

3.2 Number of segments

Now, one question one might ask is, how many segments should we use? To assess this we will
use the Bayesian information criterion (BIC),

BIC =

[
Nseg

(
Na

∑
k=1

ℓk −Na

)
+Nseg −1

]
ln(Nres)−2ln(Lc) (3.12)

where Na is the number of attributes and ℓk is the number of levels in the kth attribute. In order
to find the optimal number of segments we calculate the BIC for increasing number of segments,
the BIC will decrease as we increase the number of segments, but the rate of change will decrease
considerably after a certain number of segments. As such, we will choose the number of segments
corresponding to this “elbow point”. For example, for the case considered in Appendix A, we find
the elbow at s = 3, this is expected as we generated the data from 3 different βββ s, this is plotted in
the figure 3.1
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Figure 3.1: BIC for different number of segments, the elbow point is indicated by the red circle.

3.2.1 Elbow point

To find the elbow point we can compare the gradient of the lines before and after the point we are
checking. For example, in figure 3.1 to see if the point at segment size = 3 is an elbow we get the
gradient of the line from segment size = 2 to segment size = 3, and the gradient from segment size
= 3 to segment size = 4. These gradients are

∆2,3 =
BIC3 −BIC2

3−2
=

2552−3698
3−2

=−1146

∆3,4 =
BIC4 −BIC3

4−3
=

2526−2552
3−2

=−26

Now, we can take the ratio between ∆3,4 and ∆2,3

r =
∆3,4

∆2,3
=

−26
−1146

= 0.02

As such we can determine a minimum r that will indicate that we have found an elbow, that
is how much the gradient was reduced, here we will say that we found an elbow if r < 0.1. Here
notice that if the gradient of the first section is negative and the gradient of the next section is
positive we also determine we found an elbow, this is because in this case r < 0.
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Chapter 4

Overall results

Once we have calculated the part worths for each respondent we can summarize our findings by
calculating the performance of each level and the importance of each attribute.

4.1 Level Performance

Level performance quantifies the influence a level has on consumers when choosing a product or
service. It is calculated as follows:

1. First, we calculate the average of the respondents’ part worths for each level; for example,
our averages could be

Brand Color Price
Brand 1 Brand 2 Brand 3 Red Black Blue $100 $150 $200
0.8666 -1.4576 0.5910 -1.1974 1.3227 -0.1252 0.3676 0.0250 -0.3926

2. Next, for each attribute we take the difference between its biggest level part worth and
smallest level part worth. This is known as the range of an attribute. For our example we
have

Brand Color Price
2.3242 2.5201 0.7602

3. The performance of each level is calculated by dividing its average part worth by the sum
of the ranges of the attributes. We express these proportions as percentages. Following our
example, the level performance for Brand 1 is

0.8666×100
2.3242+2.5201+0.7602

= 15.46%

and all the level performances are

Brand Color Price
Brand 1 Brand 2 Brand 3 Red Black Blue $100 $150 $200
15.46% -26.01% 10.55% -21.37% 23.60% -2.23% 6.56% 0.45% -7.01%

SightX, Inc. 33



As such, level performance is the proportion of each level average part worth with respect to
the total attribute range. The higher the performance of a level, the more influence it has on
consumers’ choices. We can visualise level performance using a horizontal bar plot, which allows
us to quickly differentiate which levels perform better and worse:

4.2 Attribute importance

Attribute importance measures how much an attribute matters to consumers when making a choice.
It is calculated as follows:

1. First, for each respondent, we calculate the range of each attribute by taking the difference
between its biggest level part worth and smallest level part worth. For example, we have the
following individual part worths

Brand Color Price
Brand 1 Brand 2 Brand 3 Red Black Blue $100 $150 $200
0.6224 -1.0016 0.3792 -0.1743 0.7081 -0.5338 3.2356 -1.4937 -1.7419
0.5788 -3.1529 2.5741 -2.6824 0.9787 1.7037 0.4503 0.3087 -0.7590
0.1266 -2.8429 2.7163 -0.9462 2.5718 -1.6256 0.5569 0.1792 -0.7362
-2.3082 -2.3868 4.6950 -0.5690 1.0848 -0.5158 0.2459 0.0470 -0.2929
-0.6472 -0.4663 1.1134 -5.3739 7.2894 -1.9155 0.5686 0.0913 -0.6599

then, the attributes ranges are

Brand Color Price
1.6240 1.2419 4.9774
5.7270 4.3862 1.2093
5.5593 4.1974 1.2931
7.0817 1.6538 0.5387
1.7606 12.6633 1.2285

SightX, Inc. 34



2. Next, for each respondent, we divide each attribute range by the sum of the ranges and
we express these proportions as percentages. These proportions are the individual attribute
importances, for our example we get

Brand Color Price
20.71% 15.83% 63.46%
50.58% 38.74% 10.68%
50.31% 37.99% 11.70%
76.36% 17.83% 5.81%
11.25% 80.90% 7.85%

3. Finally, we get the average of the individual attribute importances, following our example
we get

Brand Color Price
41.84% 38.26% 19.90%

The higher the attribute importance, the more it matters to a consumers when choosing a
product or service. As with level performance, we can visualise attribute importance using
a horizontal bar plot, this will allow us to quickly differentiate which attributes matter the
most and the least:
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Chapter 5

Simulators

In the previous chapters we learned how to design our experiment, we also learned how to find
the value each respondent gives to each attribute, and finally we saw how we can segment our
respondents. But this information is not very useful if we cannot make predictions or inferences
about our population of interest, and how this population would react and interact with our prod-
ucts. We could use the individual part worths directly to get information about each attribute level,
but this would become overwhelming even for a relatively small number of respondents, say for
example 50. We could also look at the average part worths of all respondents, but in doing so we
loose information about individual preferences. This is when market simulators come into play,
imagine we had a group of people to which we could ask as many questions as we want about
potential products. We can do that by using their part worths and make them choose between
different products, and hence obtain valuable information about market share distribution, price
sensitivities, demand trends, and more. We can use this information to study hypothetical scenar-
ios and answer questions such as: How would my product perform versus similar products in the
market?, How would the demand of my product change in a competitive environment if I change
X characteristic?, What can I change to make my product more appealing?, etc.

Now it is important to understand that there are many factors that affect the preferences of our
buyers and that all of them cannot be captured by our simulators. Nevertheless, this should not
discourage you as even given these limitations, our simulators can give us valuable information
about the relative distribution of preferences isolated from other complicated factors that could be
outside of our control. In this chapter I will describe what market share and demand simulators
are and how to construct them using the respondents part worths.

5.1 Market share simulator

This simulator is used to find consumers’ preferences about a set of competing products. Let’s say
we are a company that produces soft drinks and we want to introduce a new no-sugar beverage to
the market, as such we would like to get an idea of how this product will perform against other four
no-sugar beverages from different companies. From our simulator we find that 5% of potential
buyers preferred our product and the other 95% is distributed among the other beverages, from
this we will need to take a step back and analyse why our product would not be as competitive
as we would like it to be; here we could change some characteristics of our product and make it
compete again with the other soft drinks.

In order to find the respondents’ preferences we first need to define the products that we want
to study. Next, for each respondent we find the utilities of each product by adding their levels’
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part worths and find their individual preferences by using equation

pi,k =
eUi,k

∑ j eU j,k
(5.1)

where pi,k is the probability of respondent k choosing product i, and Ui,k is the utility of product i
for respondent k. The preference respondent k gives to product i is equal to pi,k, the total preference
of product i, Pi, for our population is equal to

Pi =
Nres

∑
k=1

pi,k. (5.2)

and the share of preference of product i is

sharei =
Pi

∑ j Pj
(5.3)

Therefore to find the shares of preference of our products of interest, we find the probabilities
of each product being chosen by each respondent, we add those probabilities for all respondents,
and find their relative preference with respect to all products being considered. Now, this method
does not satisfy the Independence of Irrelevant Alternatives property, IIA, also known as the Blue
bus/Red bus paradox. The IIA condition says that the relative likelihood of choosing between two
options should not change if a third option is added. But in our case, if we add an option that is
similar to an already added option, then this new option will take share from all other options. For
example, let’s imagine our city has the following modes of transportation with utilities

Utility Probability
Blue Bus 1.2 32.4%

Bike 0.9 24.0%
Car 1.5 43.6%

now let’s say we add a Red Bus that is exactly the same as the Blue Bus (apart from the color),
then it is expected that it will only borrow preference from the Blue bus and not the other modes
of transportation, but what we get is the following

Utility Probability
Blue Bus 1.2 24.4%
Red Bus 1.2 24.4%

Bike 0.9 18.1%
Car 1.5 33.0%

as we can see it borrowed preference from all modes of transportation, not only the Blue Bus, and
the probability of choosing a Bus is 48.8% which is higher than before.

To reduce IIA problems we will use a top-N rule, where we take the top N products, allocate
share proportionally to them, and make the share of the remaining products equal to zero. The
share of the top products for respondent k is calculated as

pnew
i,k =

pi,k

∑
j∈top

p j,k
∀ i ∈ top (5.4)
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For example, if we had five products with the following preferences for two respondents

Product 1 Product 2 Product 3 Product 4 Product 5
Respondent 1 0.20 0.25 0.05 0.10 0.40
Respondent 2 0.35 0.05 0.20 0.25 0.15

the top 3 products for respondent 1 are Product 5, Product 2, and Product 1, and for respondent
2 are Product 1, Product 4, and Product 3, as such we choose these products and find their new
preferences following equation 5.4,

p1,1 =
0.20

0.20+0.25+0.40
= 0.24 p1,2 =

0.35
0.35+0.20+0.25

= 0.44

p2,1 =
0.25

0.20+0.25+0.40
= 0.29 p3,2 =

0.20
0.35+0.20+0.25

= 0.25

p5,1 =
0.40

0.20+0.25+0.40
= 0.47 p4,2 =

0.25
0.35+0.20+0.25

= 0.31

hence, the final preferences and shares of preference are

Product 1 Product 2 Product 3 Product 4 Product 5
Respondent 1 0.24 0.29 0.0 0.0 0.47
Respondent 2 0.44 0.0 0.25 0.31 0.0

Total Preference 0.68 0.29 0.25 0.31 0.47
Share of preference 34% 14.5% 12.5% 15.5% 23.5%

5.2 Demand curves, revenue curves, and price elasticities simulator

This simulator is used to study how the demand of a product, competing with other products, is
affected by changes in price. To calculate demand curves we first need to define our products of
interest. In the case we want to get the demand curve of one of the products we keep the other
products constant, change the price of the product of interest, and calculate the share of preference
of the product of interest at each price point. For example, let’s say our product competes with
two other products

Brand Color Price
Our product Brand 1 Red $110
Product 2 Brand 2 Blue $105
Product 3 Brand 3 Black $110

the price levels of our products are {$100, $105, $110, $115}, thus we have to get the share of
preference of our product at the price of $100, $105, $110, and $115, keeping the other products
fixed (including their price, we only change the price of the product of interest). Let’s say the
shares of preference of our product at the different price points are

$100 $105 $110 $115
Share of preference 55% 49% 37% 15%
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As such our demand curve is:

Figure 5.1: Demand curve of product of interest.

If we want to get demand curves of all the products we have to pick a fixed price point (usually
the middle price), we set this price for all products, we take the first product, change its price as
before, calculate its demand at each price point, then we take the next product, fix the price for the
other products, change the price of the current product, calculate the demand at the different price
points, and repeat until we get the demand curves of all the products.

Revenue curves

Using our demand curves we can calculate our expected revenue at each price point. To calculate
the expected revenue we multiply each price by their corresponding demand and by the total
number number of potential buyers. In our example above, if we had 200 potential buyers, our
revenue at each price point is

$100 $105 $110 $115
Revenue $100×0.55×200 = $11000 $10290 $8140 $3450

as such our revenue curve is:
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Figure 5.2: Revenue curve of product of interest.

Price elasticty of demand

Demand curves let us estimate the price elasticity of demand (PED) of our products. The PED
tells us how sensitive the demand of our product is with respect to changes in price. If PED is
less than 1 we say that our product is inelastic, i.e., changing the price of our product will have a
small effect on the demand. On the other hand, if the PED is equal or greater than 1 we say that
our product is elastic, that is changes in price will have a significant impact on the demand of the
product. The price elasticity is calculated following the formula

PED =
% change in demand

% change in price
=

∣∣∣∣∣∆CF/CFi

∆P/Pi

∣∣∣∣∣ (5.5)

where | | stands for absolute value, CFi stands for the initial cumulative frequency of the initial
price Pi, and ∆ stands for change. In our example above, the price elasticity between $100 and
$105 is:

PED =

∣∣∣∣∣ (49−55)/55
(105−100)/100

∣∣∣∣∣=
∣∣∣∣∣−6/55

5/100

∣∣∣∣∣= 6/55
5/100

= 2.18 (5.6)

As the PED > 1 we say that our product is elastic between the price range $100 - $105. The
average price elasticity is calculated using formula

PEDavg =

2(d f−di)
d f+di

2(pr f−pri)
pr f+pri

(5.7)

where d f is the demand of the maximum price pr f , and di is the demand of the minimum price
pri.
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Price interpolation

So far we have only used the price levels defined in our experiment, but in most cases we would
like to be able to consider price as a continuous variable. The issue is that we cannot ask respon-
dents to consider every possible price, as such we will use piece-wise linear interpolation. We will
fit straight lines between consecutive data points, the equation of a line going from point (xo,yo)
to point (x f ,y f ) is

y =
y f − yo

x f − xo
(x− xo)+ yo xo ≤ x ≤ x f . (5.8)

This method of interpolation can be applied to any numeric attribute not only price, as such if
other numeric attributes are need to be continuous then this method can be applied.

To obtain the demand point we will get Np price points that include the defined price levels in
our experiment. Once we get the demand curves we will use piece-wise cubic splines to interpolate
between consecutive demand point, that way we can get price elasticities between any pair of price
points, the price point must lie between the minimum and maximum price levels.
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Appendix A

Finding segments: an example

A.1 Finding the segments’ part worths

To test our segmentation method we can generate respondents from a set of pre-defined βββ s adding
random errors that follow a Gumbel distribution. First we need to define our attributes and levels:

Brand Colour Price
Brand 1 Black $100
Brand 2 Blue $105
Brand 3 Red $110

$115

with these we construct 3 sets of βββ s

Segment 1 Segment 2 Segment 3
Brand 1 1.5 -1.5 1.5

Brand Brand 2 -1.0 1.0 -0.5
Brand 3 -0.5 0.5 -1.0

Black -1.5 -1.0 1.5
Colour Blue 1.0 1.5 -1.0

Red 0.5 -0.5 -0.5

$100 2.0 2.0 2.0
Price $105 1.0 1.0 1.0

$110 -1.0 -1.0 -1.0
$115 -2.0 -2.0 -2.0

given that our latent class method will shrink or stretch the utilities of every segment depending
on the goodness of fit, we will use the relative performance of the levels. To obtain the relative
performance we follow Chapter 4. The relative performances for each segment are:
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Segment 1 Segment 2 Segment 3
Brand 1 16.67% -16.67% 16.67%

Brand Brand 2 -11.11% 11.11% -5.56%
Brand 3 -5.56% 5.56% -11.11%

Black -16.67% -11.11% 16.67%
Color Blue 11.11% 16.67% -11.11%

Red 5.56% -5.56% -5.56%

$100 22.22% 22.22% 22.22%
Price $105 11.11% 11.11% 11.11%

$110 -11.11% -11.11% -11.11%
$115 -22.22% -22.22% -22.22%

Now we need to define our experiment (using effects coding) as follows

Choice set index Brand 1 Brand 2 Black Blue $100 $105 $110

1
1 0 1 0 0 0 1
0 1 -1 -1 1 0 0
-1 -1 0 1 0 1 0

2
1 0 1 0 0 1 0
0 1 0 1 1 0 0
-1 -1 -1 -1 0 0 1

3
1 0 0 1 1 0 0
0 1 1 0 0 0 1
-1 -1 -1 -1 0 1 0

4
1 0 1 0 -1 -1 -1
0 1 0 1 0 1 0
-1 -1 -1 -1 1 0 0

5
1 0 0 1 0 1 0
0 1 -1 -1 -1 -1 -1
-1 -1 1 0 1 0 0

6
1 0 -1 -1 1 0 0
0 1 0 1 -1 -1 -1
-1 -1 1 0 0 0 1

7
1 0 0 1 0 0 1
0 1 -1 -1 0 1 0
-1 -1 1 0 -1 -1 -1

8
1 0 0 1 -1 -1 -1
0 1 -1 -1 0 0 1
-1 -1 1 0 0 1 0

9
1 0 -1 -1 0 1 0
0 1 1 0 1 0 0
-1 -1 0 1 -1 -1 -1

10
1 0 -1 -1 -1 -1 -1
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0 1 1 0 0 1 0
-1 -1 0 1 0 0 1

11
1 0 -1 -1 0 0 1
0 1 1 0 -1 -1 -1
-1 -1 0 1 1 0 0

12
1 0 1 0 1 0 0
0 1 0 1 0 0 1
-1 -1 -1 -1 -1 -1 -1

Next, we generate 80, 100, and 90 respondents following the βββ s of Segment 1, Segment 2,
and Segment 3 respectively. In order to generate these responses we calculate the utilities for each
product within each choice set and add to each utility a random number that follows a Gumbel
distribution with a location µ = 0 and a scale γ = 0.5, and select the product with the highest
utility. The generated set of responses can be found in the excel file segmentation data set.xlsx,
where each column represents a respondent, a 1 means the product in that row was selected and
0 otherwise, the document rows follow the same order as defined above. With these artifical
responses we run the method defined in Chapter 3. We set our number of segments to 3 and
run five different simulations starting at different random βββ s to avoid getting stuck in a local
maximum. After each step we compute the complete log likelihood of our sample, ln(Lc), and we
stop after the gain is less than 0.01. The results are summarized in the following table

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

ln(Lc)

-3803.53 -6674.17 -5723.52 -4593.47 -10524.32
-2357.79 -1989.06 -2139.05 -1782.18 -1938.26
-1989.37 -1542.64 -1540.48 -1214.45 -1470.51
-1977.43 -1240.07 -1250.72 -1213.49 -1224.84
-1973.48 -1215.05 -1218.32 -1213.49 -1213.49
-1974.45 -1213.49 -1213.86 -1213.49

-1213.49 -1213.55
-1213.49
-1213.49

as we can see the maximum ln(Lc) is -1213.49, the method classified all respondents correctly and
estimated the relative performances as follows
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Segment 1 Segment 2 Segment 3
Brand 1 16.82% -16.87% 17.22%

Brand Brand 2 -10.58% 11.18% -5.64%
Brand 3 -6.24% 5.69% -11.58%

Black -18.13% -9.56% 15.74%
Color Blue 11.00% 16.62% -11.12%

Red 7.14% -7.04% -4.61%

$100 20.83% 21.95% 23.07%
Price $105 11.93% 11.26% 9.11%

$110 -10.12% -9.39% -10.89%
$115 -22.64% -23.82% -21.27%

As we can see the part worths are not exactly the same as the ones defined above, but this is
expected due to the random error we added to the utilities when generating the artificial responses.

A.2 Optimal number of segments

To test if we can estimate the optimal number of segments we run our latent class method from
1 to 6 segments, for each number of segments we run 5 simulations to avoid getting stuck in a
global maximum. For the best simulations at each number of segments we calculate the BIC, the
results are plotted in figure A.1

Figure A.1: BIC for different number of segments, the elbow point is indicated by the red circle.

here we can see that the elbow point is located a 3 segments which is expected as our data was
generated from 3 sets of βββ s.
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Appendix B

Finding utilities: an example

B.1 Finding individual part worths

To test our utility estimation method we can generate respondents from a set of pre-defined part
worths adding random errors that follow a Gumbel distribution. First we need to define our at-
tributes and levels:

Brand Colour Price
Brand 1 Black $100
Brand 2 Blue $105
Brand 3 Red $110

$115

with these we define the part worths

Attribute Level Part worths
Brand 1 1.5

Brand Brand 2 -1.0
Brand 3 -0.5

Black -1.5
Colour Blue 1.0

Red 0.5

$100 2.0
Price $105 1.0

$110 -1.0
$115 -2.0

given that our method will shrink or stretch the utilities depending on the goodness of fit, we will
use the relative performance of the levels. To obtain the relative performance we follow Chapter
4. The relative performances are:
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Attribute Levels Part worths
Brand 1 16.67%

Brand Brand 2 -11.11%
Brand 3 -5.56%

Black -16.67%
Color Blue 11.11%

Red 5.56%

$100 22.22%
Price $105 11.11%

$110 -11.11%
$115 -22.22%

Now we need to define our experiment (using effects coding) as follows

Choice set index Brand 1 Brand 2 Black Blue $100 $105 $110

1
1 0 1 0 0 0 1
0 1 -1 -1 1 0 0
-1 -1 0 1 0 1 0

2
1 0 1 0 0 1 0
0 1 0 1 1 0 0
-1 -1 -1 -1 0 0 1

3
1 0 0 1 1 0 0
0 1 1 0 0 0 1
-1 -1 -1 -1 0 1 0

4
1 0 1 0 -1 -1 -1
0 1 0 1 0 1 0
-1 -1 -1 -1 1 0 0

5
1 0 0 1 0 1 0
0 1 -1 -1 -1 -1 -1
-1 -1 1 0 1 0 0

6
1 0 -1 -1 1 0 0
0 1 0 1 -1 -1 -1
-1 -1 1 0 0 0 1

7
1 0 0 1 0 0 1
0 1 -1 -1 0 1 0
-1 -1 1 0 -1 -1 -1

8
1 0 0 1 -1 -1 -1
0 1 -1 -1 0 0 1
-1 -1 1 0 0 1 0

9
1 0 -1 -1 0 1 0
0 1 1 0 1 0 0
-1 -1 0 1 -1 -1 -1

10
1 0 -1 -1 -1 -1 -1
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0 1 1 0 0 1 0
-1 -1 0 1 0 0 1

11
1 0 -1 -1 0 0 1
0 1 1 0 -1 -1 -1
-1 -1 0 1 1 0 0

12
1 0 1 0 1 0 0
0 1 0 1 0 0 1
-1 -1 -1 -1 -1 -1 -1

Next, we generate 100 respondents following the part worths defined above. In order to gen-
erate these responses we calculate the utilities for each product within each choice set and add to
each utility a random number that follows a Gumbel distribution with a location µ = 0 and a scale
γ = 0.8, and select the product with the highest utility. The generated set of responses can be found
in the excel file utility estimation data set.xlsx, where each column represents a respondent, a 1
means the product in that row was selected and 0 otherwise, the document rows follow the same
order as defined above. With these artificial responses we run the method defined in Chapter 2.

B.1.1 Adaptive stage

We initialize γγγ and βββ i as zero vectors, and VVV as indicated in section 2.2 of chapter 2. We run our
simulation for 3000 iterations, after each iteration we adjust the proportionality factor f used in
the Metropolis Hastings Algorithm. The evolution of f can be seen in the following plot

Figure B.1: f factor for successive iterations of the conjoint experiment defined above.

We discard the first 1 500 iterations and take the average of the remaining 1 500 iterations to
calculate the f that will be used in the next two stages; for our example f = 0.542.

B.2 Equilibration stage

We set the proportionality factor to f = 0.542 an run our simulation for 20 000 steps, after every
iteration we calculate R2

Mc. The evolution of R2
Mc can be seen in the following plot
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Figure B.2: R2
Mc for successive iterations of the conjoint experiment defined above.

To see if our simulation has equilibrated we discard the first 10 000 iterations, and divide the
remaining ones into 10 Markov chains each of length N = 1000, for each chain we calculate the
Geweke statistic. The results are shown in the following plot

Figure B.3: Geweke statistics for successive Markov chains of the conjoint experiment defined
above.

Here we can see that 8 of them fall within the {-2.6,2.6} range. We also calculate calculate
the exponential moving average as shown bellow
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Figure B.4: R2
Mc and its moving average for successive iterations of the conjoint experiment de-

fined above.

The standard deviation of the moving average is 0.007. As both conditions defined in Chapter
2 section 2.2.3 are satisfied, we say that the simulation has reach equilibrium.

B.2.1 Measurement stage

We run the simulation for 10 000 more iterations and record the βββ of every 5th fifth iteration.
The final individual part worths are the averages of the recorded βββ . The individual part worths
can be found in the file part worths example.xlsx. The relative performances are presented in the
following table

Attribute Level Part worths
Brand 1 16.83%

Brand Brand 2 -11.50%
Brand 3 -5.33%

Black -16.42%
Colour Blue 11.02%

Red 5.40%

$100 21.61%
Price $105 11.57%

$110 -10.56%
$115 -22.62%

As we can see the part worths are not exactly the same as the ones defined above, but this is
expected due to the random error we added to the utilities when generating the artificial responses.
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